VOITH TURBO

High-Pressure Internal Gear Pumps Type IPV

Dimension sheet catalogue for single and multiple-flow pumps

Combination of IP high, medium, and low-pressure pumps

Contents

	Page
Voith Internal Gear Pumps Type IPV	3
Features and operation, design and combinations	4
Technical data	5
Data sheets, dimensions and performance curves IPV 3, IPV 4, IPV 5, IPV 6, IPV 7	6-15
Intermediate housings for multiple-flow pumps	16-18
Type codes, Designations for ordering	19
Multiple-flow pump combinations	20
Ordering examples	21
Intermediate housings with coupling	22, 23
Combination of variable-displacement pumps with IP internal gear pumps	24, 25
SAE suction and discharge flanges	26
DBV pressure relief valves	27

Voith Internal Gear Pumps Type IPV

The market requires hydraulic pumps to be compact and silent and to have a low pressure pulsation and high efficiency.

Based on the proven IPC medium-pressure pumps with radial and axial sealing gap compensation Voith Turbo has developed its high-pressure internal gear pumps series IPV to meet these requirements of the market.

IPV high-pressure internal gear pumps are suitable for all applications where a low noise emission, high efficiency, compact design, and low weight are required, among other things.

Typical applications:

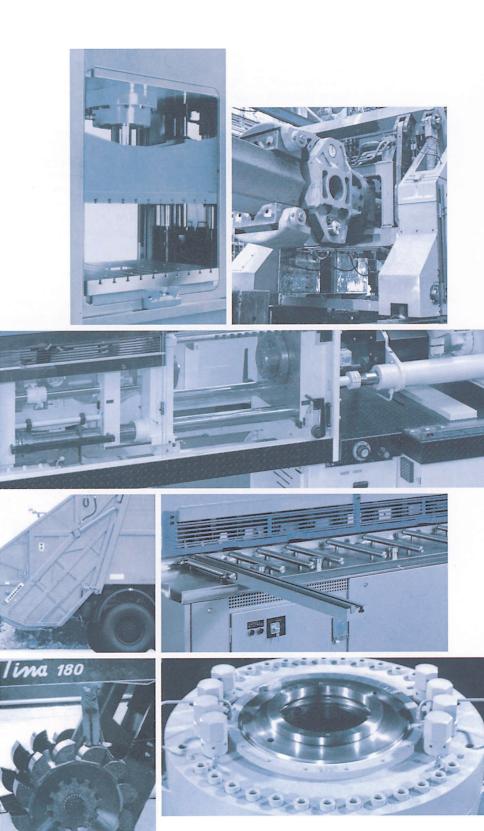
Plastics engineering

Plastics injection moulding and blowmoulding machines

Metal working machines Press brakes, shears, punching machine

General press manufacture

Materials handling


Crane construction, lifting platforms, electric fork lifts

Shipbuilding Steering gear, stabilizers, deck cranes

Public service vehicles Refuse-collecting vehicles, special vehicles

Power generation

Hydrostatic support and lifting of gas, steam, and water turbine runners as well as generators

Featues and opeartion, design and combinations

Features

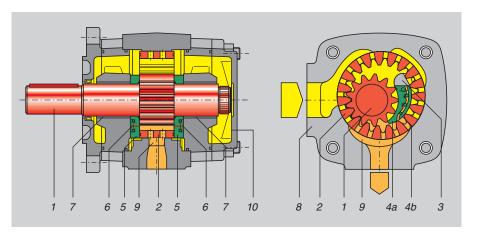
The most striking design features of IPV pumps are: internal splines, plain bearings, radial and axial gap compensation. They guarantee smooth operation and a low-pulsation flow. The proven involute splines optimized in terms of volumes permit a compact design.

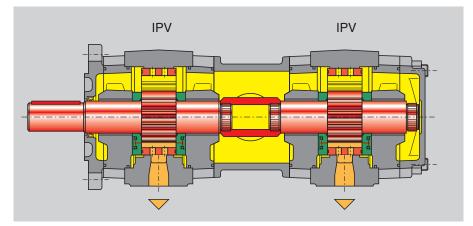
Design

- 1 Pinion shaft
- 2 Internal gear
- 3 Filler pin
- 4a Filler-segment carrier
- 4b Filler-sealing segment
- 5 Axial disc
- 6 Axial pressure area
- 7 Plain bearings
- 8 Housing
- 9 Hydrostatic bearing
- 10 Cover with bleeder screw

Combinations

IPV pumps of the same size or of different sizes can be combined with each other to form double pumps or multiple-flow pumps. The possibility of combining them with Voith medium and low-pressure pumps results in a particularly wide field of applications.


Combination with pumps from different manufacturers is possible as well.


Operation

When the gears are rotating, oil is sucked into the housing and into the space between pinion and internal gear. The two gears run totally freely over a wide range of their circumference, which guarantees an excellent suction behaviour of the pump.

In circumferential direction, the tooth spaces are sealed off by the meshing teeth and the filler. Axially, an almost gap-free sealing is achieved by axial discs. The volumetric losses are therefore minimal. The oil sucked into the pump is displaced by the tooth tips entering the tooth spaces. The user benefits from the new pump series in the following ways, among other things:

- Extremely low noise emission
- Extremely favourable size/displacement ration
- Long service life owing to plain bearings and balancing of forces
- High overall efficiency
- Suitable for building up multipleflow pump units.

Technical data

The performance data refer to the delivery of mineral oils with a viscosity of 20...40 cSt and a pump intake pressure of 0.8 bar (min) and 3 bar (max).

The size mentioned together with the type designation corresponds roughly to the displacement in cm⁻³/rev given in the table.

Calculation of delivery

 $Q = V_{\text{g th}} \cdot n \cdot \eta_{\text{v}} \cdot 10^{-3} \text{ [l/min]}$

Calculation of power

$$P = \frac{Q \cdot \Delta p}{600 \cdot \eta_{\rm q}}$$

= Delivery in I/min Q

 $V_{\rm g th}$ = Displacement in cm³/rev

= Speed in rev/min n`

= Volumetric efficiency η_v

= Overall efficiency η_g P

= Power in kW

 Δp = Pressure in bar

Sizes		ent Speed	rev/min	Delivery		ressure b	
Frame size	cm ³ /rev *	min**	max	I/min at 1500 rev/min	Continous pressure	Peak pressure 1500 rev/	Peak at pressure at min n _{max}
IPV 3-3.5	3.6	400	3600	5.4	330	345	345
IPV 3-5	5.2	400	3600	7.8	330	345	345
IPV 3-6.3	6.4	400	3600	9.6	330	345	345
IPV 3-8	8.2	400	3600	12.3	330	345	345
IPV 3-10	10.2	400	3600	15.3	330	345	345
IPV 4-13	13.3	400	3600	19.9	330	345	345
IPV 4-16	15.8	400	3400	23.7	330	345	345
IPV 4-20	20.7	400	3200	31.0	330	345	345
IPV 4-25	25.4	400	3000	38.1	300	330	330
IPV 4-32	32.6	400	2800	48.9	250	280	280
IPV 5-32	33.1	400	3000	49.6	315	345	315
IPV 5-40	41.0	400	2800	61.5	315	345	315
IPV 5-50	50.3	400	2500	75.4	280	315	280
IPV 5-64	64.9	400	2200	97.3	230	250	250
IPV 6-64	64.1	400	2600	96.1	300	330	300
IPV 6-80	80.7	400	2400	121.0	280	315	280
IPV 6-100	101.3	400	2100	151.9	250	300	270
IPV 6-125	126.2	400	1800	189.3	210	250	250
IPV 7-125	125.8	400	2200	188.7	300	330	300
IPV 7-160	160.8	400	2000	241.2	280	315	280
IPV 7-200	202.7	400	1800	304.0	250	300	270
IPV 7-250	251.7	400	1800	377.5	210	250	250

Note:

Data

The permissible peak pressures are based on a duty cycle of 15 %, the maximum cycle time being 1 min.

- * Due to manufacturing tolerances displacement can be up to 1.5 % less.
- ** Please contact us for information about the permissible peak pressures at speeds lower than <400 rev/min or between 1500 rev/min and n_{max}.

Characteristics

Design	Internal gear pump
Mounting	SAE or VDMA flange
Pipe connection	SAE J 518 c code 61
Direction of rotation	Clockwise or anti-clockwise
Inlet pressure	0.6 to 3 bar absolute
Shaft loading	In the event of radial or axial shaft loadings, please contact the manufacturer
Installation position	Any
Viscosity range	10-100 cSt, perm. starting visc. 2000 cSt
Pressure medium	Mineral oil as per DIN 51524, part 2 or 3
Pressure medium temp.	- 20° C to + 80° C
Contamination	Max. perm. contamination of pressure medium as per NAS 1638, class 8. Filter with minimum retention rate of $\beta_{20} \ge 75$. For longer service life we recommend using a filter with a minimum rate of $\beta_{10} \ge 100$
Ambient temperature	-10° C to + 60° C

Standard design

Weights and dimensions

С

70

77.5

82.5

IPV 3-3.5 66

IPV 3-6.3 73

IPV 3-5

IPV 3-8

IPV 3-10

е

20.5 9

20.5 11

20.5 11

20.5 13

20.5 13

g

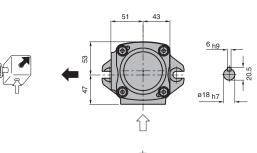
h

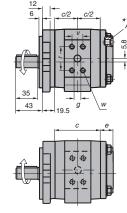
14 38.1

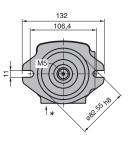
14

19

19


21

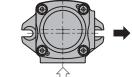

38.1


47.5

47.5

52.4

k


17.5

17.5

22

22

26.2

r

38.1

38.1

38.1

38.1

38.1

M8x13

M8x13

M10x15

M10x15

M10x15

V

17.5

17.5

17.5

17.5

17.5

W

M8x13

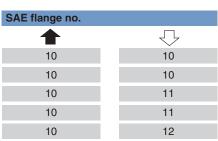
M8x13

M8x13

M8x13

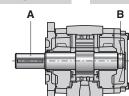
M8x13

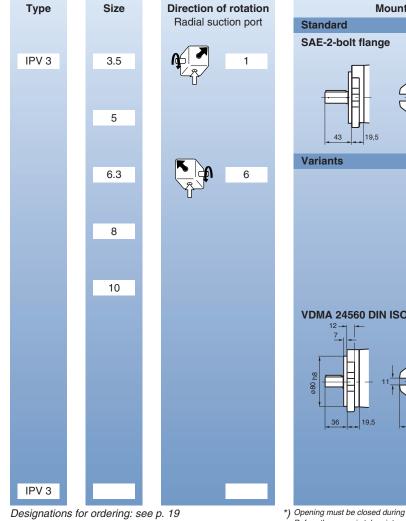
kg


4,0

4,2

4,4


4,6


4,8

Permissible drive torques in Nm

	Drive shaft A	Secondary shaft B
IPV 3	160	80

Mounting flange Shaft end Dimen-Dimen-0 1 sions as sions as above above 43 30 0 0 Shaft end Dimension as above Involute splines ANSI B92. 1a VDMA 24560 DIN ISO 3019/2, 2-bolt flange 11 T 16/32 DP 30 109 5 h9 4 1 \pm 18 ø16 _{h7}

*) Opening must be closed during operation. Tightening torque MA = 18 Nm. Before the pump is taken into service, the opening can be used as filling or deaeration, depending on the installation of the pump. Screw plug M10x1, hexagon socket, width across flats 6.

Delivery Q

Performance curves

Measuring conditions:	
Speed	<i>n</i> = 1500 min ⁻¹
Viscosity	υ = 46 cSt
Operating temperature	<i>t</i> = 40° C

20

15

10

5

0 L 0

100

95

90 -85 -80 -75 -70 _ 0

10

8

6

4

2

0

60

55

50

45

40 L 0

50

100

150

Operating pressure p in bar -

200

250

300

Delivery Q in l/min —

Efficiency in % --

Input P in kW —

Airborne noise level in dB(A)-

							- IPV	3-6,3 3-8 3-10
	1							
		+						
		+						
5	50	100	15	50 2	.00 2	250	300	350
	C		ting pres	ssure <i>p</i> in b	ar ——►			
		-						
1		1						
		-						
5	0	100	15	50 2	.00 2	250	300	350
	C	Opera	ting pres	ssure <i>p</i> in b	ar ——			
		-						_
5	0	100	15	50 2	00 2	250	300	350
	C	Opera	ting pres	ssure <i>p</i> in b	ar ——			
								_
1		7						

Efficiency η_{ges} and η_{vol}

Airborne noise level

Input power P

Measuring location 1 m axial

Note:

Voith sound-measuring room (lowreverberation room. In an anechoic room the values will be 5 dB(A) lower).

350

IPV 3-3,5 IPV 3-5 IPV 3-6,3

Standard design

Weights and dimensions С

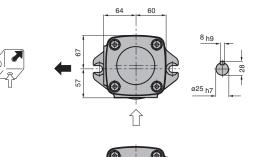
88.5

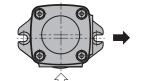
92.5

98

104

113


IPV 4-13


IPV 4-16

IPV 4-20

IPV 4-25

IPV 4-32

v

17.5

17.5

22

22

22

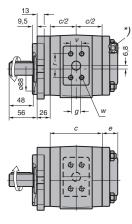
W

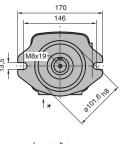
M8x13

M8x13

M10x15

M10x15 10,2


M10x15 11,0


kg

8,6

9,0

9,6

Shaft end

k

26.2

26.2

30.2

30.2

30.2

r

38.1

38.1

47.5

47.5

47.5

M10x15

M10x15

M10x15

M10x15

M10x15

SAE flange no.	
	\bigtriangledown
10	12
10	12
11	13
11	13
11	13

Permissible drive torques in Nr

е

31

31

31

31

31

g

13 23

14 25

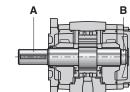
18 27

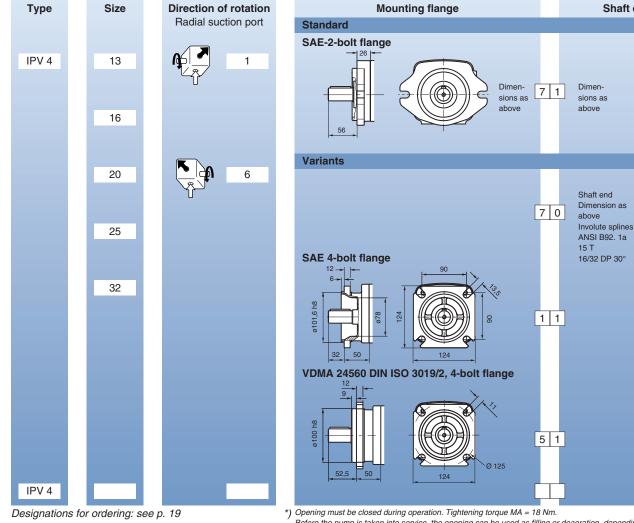
18 30

18 32

h

52.4


52.4


58.7

58.7

58.7

	Drive shaft A	Secondary shaft B
IPV 4	335	190

Before the pump is taken into service, the opening can be used as filling or deaeration, depending on the installation of the pump. Screw plug M10x1, hexagon socket, width across flats 6.

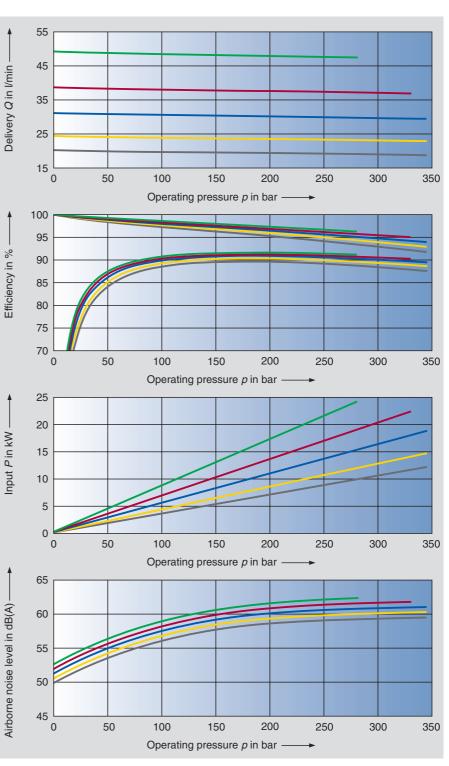
Delivery Q

Performance curves

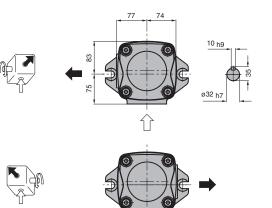
Measuring conditions:Speed $n = 1500 \text{ min}^{-1}$ Viscosity $\upsilon = 46 \text{ cSt}$ Operating temperature $t = 40^{\circ} \text{ C}$

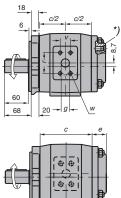
 IPV 4-13
 IPV 4-16
 IPV 4-20
 IPV 4-25
 IPV 4-32

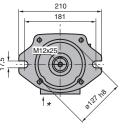
Efficiency η_{ges} and η_{vol}

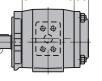

Input power P

Airborne noise level

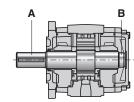

Measuring location 1 m axial

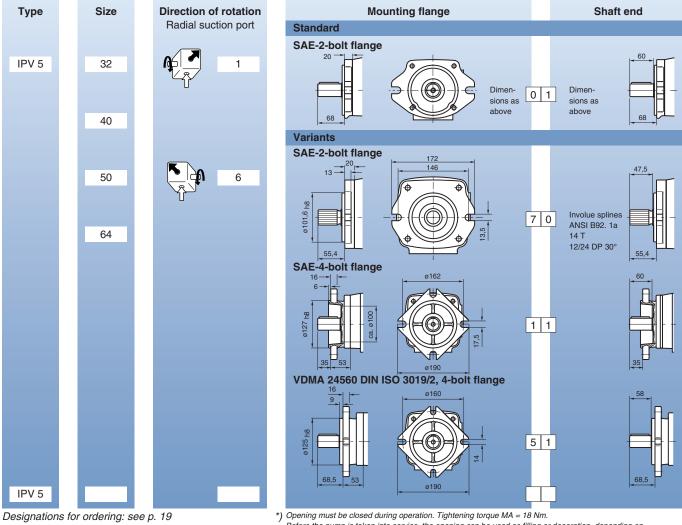

Note:


Voith sound-measuring room (lowreverberation room. In an anechoic room the values will be 5 dB(A) lower).



Standard design

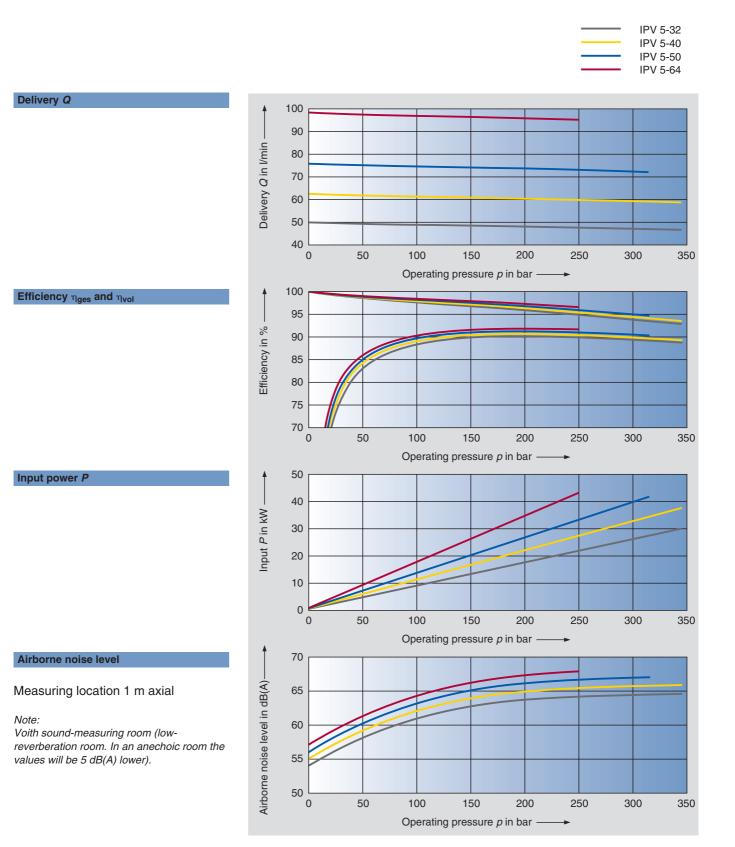



Weights a	nd dim	nensio	ons								
	С	е	g	h	i	k	1	r	V	W	kg
IPV 5-32	119	36	18	32	58.7	30.2	M10x15	47.5	22	M10x15	15,5
IPV 5-40	125	36	19	35	70	36	M12x20	52.4	26.2	M10x15	16,3
IPV 5-50	132	36	21	40	70	36	M12x20	52.4	26.2	M10x15	17,4
IPV 5-64	163	36	23	40	70	36	M12x20	52.4	26.2	M10x16	18,7

SAE flange no.	
	\bigcirc
11	13
12	30
12	30
12	30

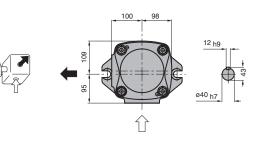
Permissible drive torques in Nm

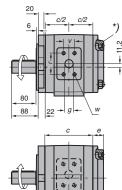
	Drive shaft A	Secondary shaft B
IPV 5	605	400

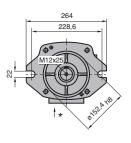


*) Opening must be closed during operation. Tightening torque MA = 18 Nm. Before the pump is taken into service, the opening can be used as filling or deaeration, depending on the installation of the pump. Screw plug M10x1, hexagon socket, width across flats 6.

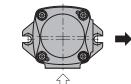
Performance curves

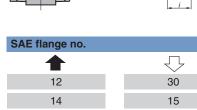

Measuring conditions:	
Speed	<i>n</i> = 1500 min ⁻¹
Viscosity	υ = 46 cSt
Operating temperature	<i>t</i> = 40° C

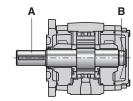


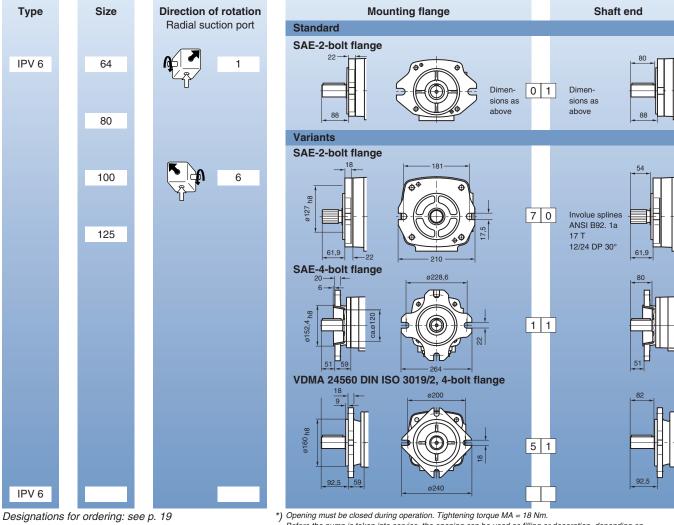

11

We


Standard design



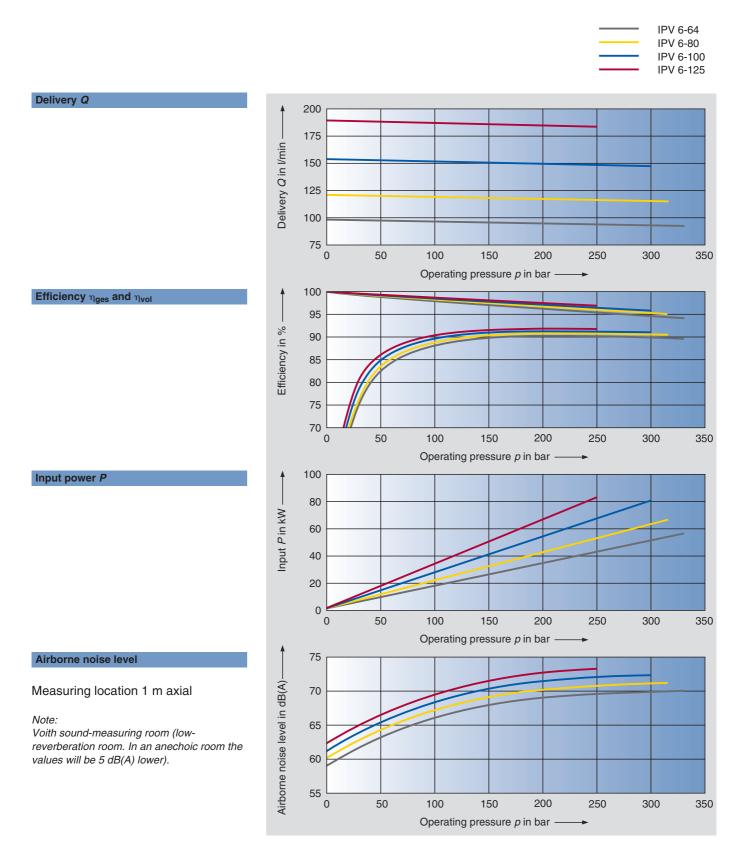


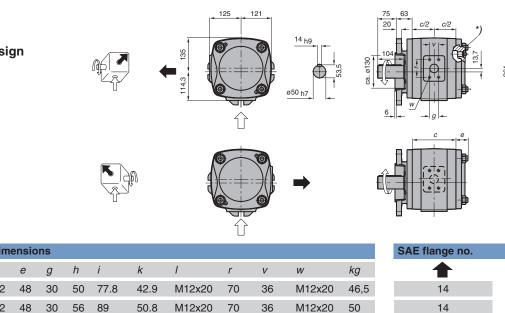

Weights an	Weights and dimensions												
	С	е	g	h	i	k	1	r	V	W	kg		
IPV 6-64	140	40	23	40	70	36	M12x20	52.4	26.2	M10x15	29,2		
IPV 6-80	148	35	23	45	77.8	42.9	M12x20	70	36	M12x20	30,7		
IPV 6-100	158	35	27	50	77.8	42.9	M12x20	70	36	M12x20	32,6		
IPV 6-125	170	40	30	50	77.8	42.9	M12x20	70	36	M12x20	35,0		

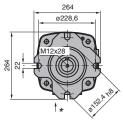
SAE flange no.	
	\bigtriangledown
12	30
14	15
14	15
14	15

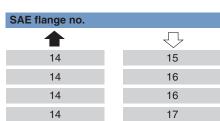
Permissible drive torques in Nm	l
	Drive chaft A

	Drive shaft A	Secondary shaft B							
IPV 6	1050	780							

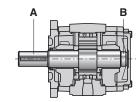


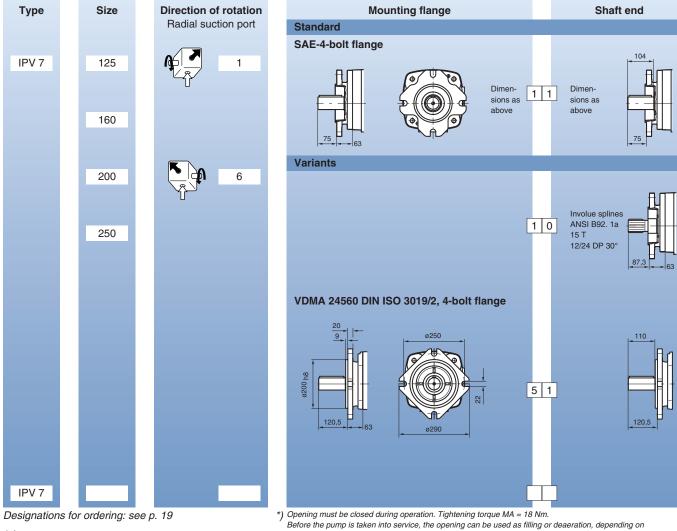

*) Opening must be closed during operation. Tightening torque MA = 18 Nm. Before the pump is taken into service, the opening can be used as filling or deaeration, depending on the installation of the pump. Screw plug M10x1, hexagon socket, width across flats 6.


Performance curves


Measuring conditions:Speed $n = 1500 \text{ min}^{-1}$ Viscosityv = 46 cStOperating temperature $t = 40^{\circ} \text{ C}$

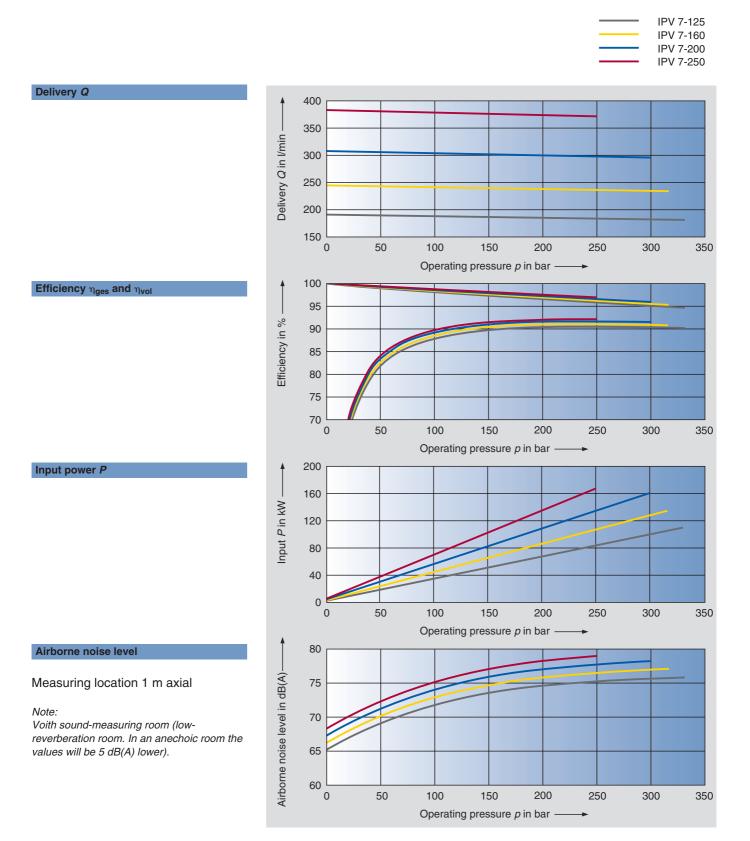
Standard design

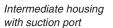




Weights and dimensions												
	С	е	g	h	i	k	1	r	V	W	kg	
IPV 7-125	152	48	30	50	77.8	42.9	M12x20	70	36	M12x20	46,5	
IPV 7-160	162	48	30	56	89	50.8	M12x20	70	36	M12x20	50	
IPV 7-200	174	46	34	62	89	50.8	M12x20	70	36	M12x20	54	
IPV 7-250	188	42	38	72	106.3	62	M16x25	70	36	M12x20	59	

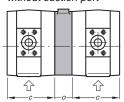
Permissible drive torques in Nm								
	Drive shaft A	Secondary shaft B						
IPV 7	1960	1200						

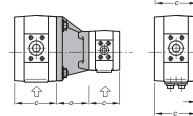


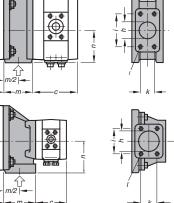

the installation of the pump. Screw plug M10x1, hexagon socket, width across flats 6.

Performance curves

Measuring conditions:Speed $n = 1500 \text{ min}^{-1}$ Viscosityv = 46 cStOperating temperature $t = 40^{\circ} \text{ C}$




Intermediate housing without suction port



Œ

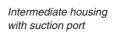
Туре	Size	т	m/2	n	0	h	i	k	I	SAE suction flange no.
IPV	7/7			100						
IPV/C	7/7	140	70	120	-	100	130,2	77,8	M 16 x 25 deep	18
IPC	7/7	-	_	-	56	-	-	-	-	-
IPV	7/6									
IPV/C	7/6									
IPC/V	7/6	140	70	120	-	100	130,2	77,8	M 16 x 25 deep	18
IPC	7/6									
IPV/N	7/6									
IPC/N	7/6	-	-	-	72	-	-	-	-	-
IPV	7/5									
IPV/C	7/5									
IPC/V	7/5	110	55	110	-	76	106,3	62	M 16 x 25 deep	17
IPC	7/5									
IPV/N	7/5									
IPC/N	7/5	-	-	-	70	-	-	-	-	-
IPV	7/4									
IPV/C	7/4	110		440		70	100.0			
IPC/V	7/4	110	55	110	-	76	106,3	62	M 16 x 25 deep	17
IPC	7/4									
IPV/N	7/4									
IPC/N	7/4	-	-	-	60	-	-	-	-	-
IPV	7/3	110		440		70	100.0			
IPC/V	7/3	110	55	110	-	76	106,3	62	M 16 x 25 deep	17
IPV	6/6	140		100		70	100.0	00	Machon	17
IPV/C	6/6	110	55	100	-	76	106,3	62	M 16 x 25 deep	17
IPC	6/6	-	-	-	55	-	-	-	-	-

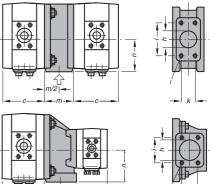
Intermediate housing without suction port

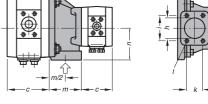
Intermediate

housings for

multiple-flow


pumps


Ŷ Ŷ

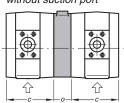

 $\hat{\mathbf{U}}$

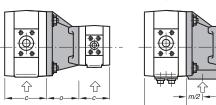
٩

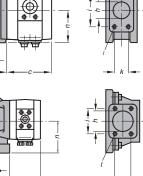
 $\hat{\mathbf{U}}$

Туре	Size	т	m/2	n	0	h	i	k	Ι	SAE suction flange no.	
IPV/N	6/6				70						
IPC/N	6/6	-	-	-	72	-	-	-	-	-	
IPV	6/5										
IPV/C	6/5	110	FF	100		76	106.0	60	M 16 x 05 doop	17	
IPC/V	6/5	110	55	100	-	76	106,3	62	M 16 x 25 deep	17	
IPC	6/5										
IPV/N	6/5				70					-	
IPC/N	6/5	_	-	-	70	_	_	_	_	-	
IPV	6/4										
IPV/C	6/4	110	55	100	_	76	106,3	62	M 16 x 25 deep	17	
IPC/V	6/4	110	55	100	_	70	100,5	02	W 10 x 23 deep	17	
IPC	6/4										
IPV/N	6/4	_	_	_	60	_	_	_	_	-	
IPC/N	6/4				00						
IPV	6/3	90	45	90	_	60	89	50,8	M 12 x 20 deep	16	
IPC/V	6/3	00	10	00		00	00	00,0		10	
IPN	6/6	-	-	-	67	-	-	-	-	-	
IPN/V	6/5	_	_	_	64	_	_	_	_	-	
IPN/C	6/5				0.						
IPN	6/5	-	-	-	66	-	-	-	-	-	
IPN/V	6/4	_	_	_	64	_	_	_	_	-	
IPN/C	6/4										
IPN	6/4	-	-	-	63	-	-	-	-	-	
IPN/V	6/3	-	-	-	58	-	-	-	-	-	
IPV	5/5										
IPV/C	5/5	90	45	82	-	60	89	50,8	M 12 x 20 deep	16	
IPC	5/5										

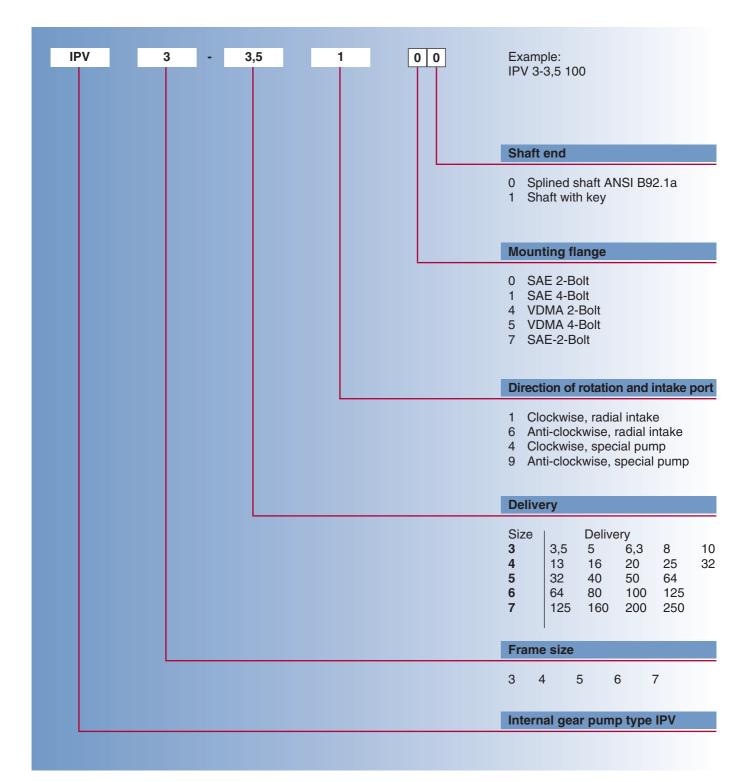
Intermediate housing without suction port

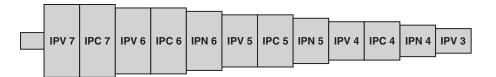

Intermediate housing with suction port


B


↔ m/2 |**-**

Œ





Туре	Size	т	m/2	n	0	h	i	k	1	SAE suction flange no.
IPV/N	5/5				64				_	
IPC/N	5/5	_	_	-	04	_	_	_	_	-
IPV	5/4									
IPV/C	5/4	90	45	82	_	60	89	50,8	M 12 x 20 deep	16
IPC/V	5/4	90	40	02	-	00	09	50,6	M 12 x 20 deep	10
IPC	5/4									
IPV/N	5/4				<u> </u>					
IPC/N	5/4	_	_	-	60	_	_	_	_	-
IPV	5/3	80	40	82		50	77.0	40.0	M 10 y 00 doop	15
IPC/V	5/3	80	40	82	-	50	77,8	42,9	M 12 x 20 deep	15
IPN	5/5	_	_	_	62	_	_	_	-	
IPN/V	5/4				<u> </u>					
IPN/C	5/4	-	_	-	60	_	_	_	-	
IPN	5/4	-	-	-	54	-	-	-	-	-
IPN/V	5/3	_	_	_	50	_	_	_	-	-
IPV	4/4									
IPV/C	4/4	66	33	70	-	40	70	36	M 12 x 20 deep	30
IPC	4/4									
IPV/N	4/4				50					
IPC/N	4/4	_	_	-	52	_	_	-	-	-
IPV	4/3		00	70		10	70		M 10 00	<u></u>
IPC/V	4/3	66	33	70	-	40	70	36	M 12 x 20 deep	30
IPN	4/4	_	-	-	48	-	-	-	-	-
IPN/V	4/3	-	-	-	46	-	-	-	-	-
IPV	3/3	45	22,5	65	-	25	52,4	26,2	M 10 x 15 deep	12

Type codes Designations for ordering

Multiple-flow pump combinations

Pump combinations in order of size and type.

Combinations with IPV pumps

IPV pumps of identical or different sizes may be combined into multi-flow pumps. All sizes listed as single pumps with their relevant displacements are available as dual and tripleflow pumps, arranged in rising order of size and displacement volume.

Combination IPV pumps with IP pumps

IPV pumps may also be combined with IPC (medium-pressure) and IPN (low-pressure) pumps. The pumps should be arranged in order of type and size, as mentioned above. It is permissible to skip one size, i.e. it is not necessary to combine pumps in adjacent group sizes.

Combinations with other pump systems are possible (see pp. 22 to 25).

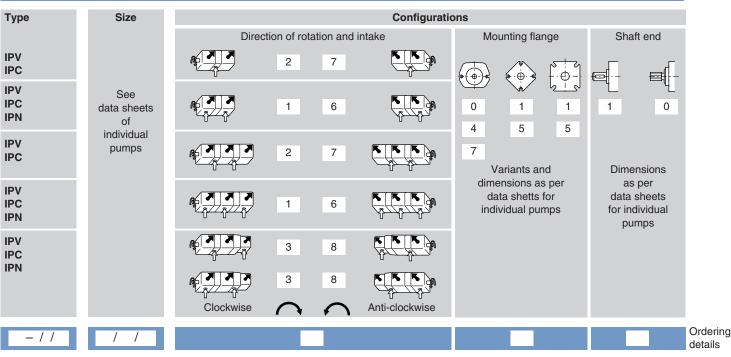
With identical sizes (V, C, N) and identical displacements (3, 4, 5, 6, 7), the pump with the larger displacement volume is arranged nearest to the drive.

Mounting and assembly

Multi-flow pumps are usually flangemounted to the drive unit. The customer can choose from a variety of flanges (see separate data sheets, IPC catalogue G 1209, and IPN catalogue G 1418). The same applies to shaft ends.

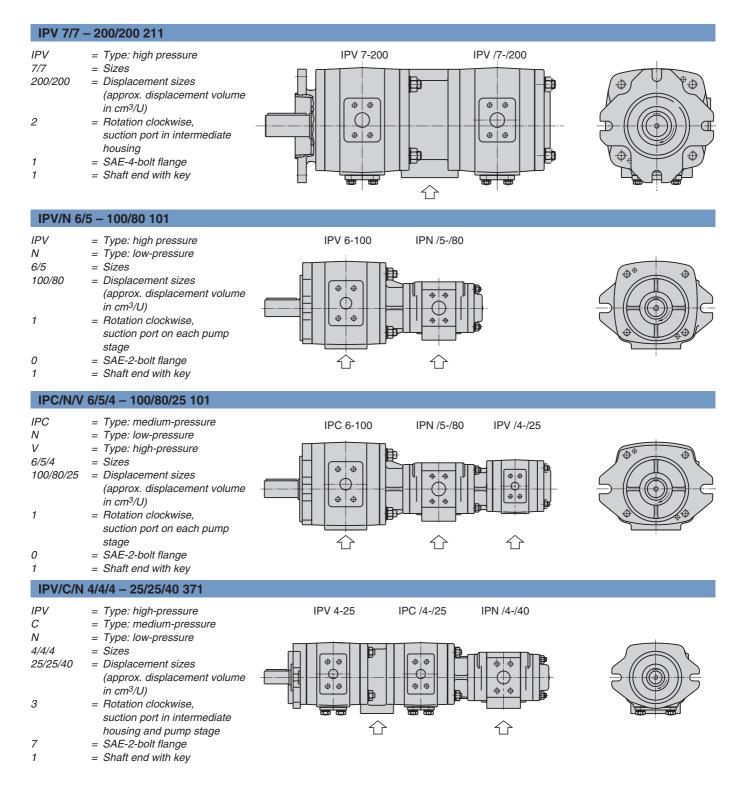
The relevant intermediate housings are on pages 16 - 18.

Apart from double and triple flow pumps, quadruple flow pumps are also possible, but require manufacturer's approval.


Suction connection for multiple flow pumps

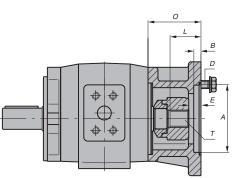
With combinations of IPV and/or IPC pumps, the customer may in some cases choose between units where the intake port is located in the intermediate housing and units where it is located on a pump stage.

With IPN pumps the suction connection is always at the individual pump.


Step-by-step selection guide

- 1. Determine
- pressure range = type (V, C, N)2. Determine
- displacement = size (3, 4, 5, 6, 7)3. Determine pump order (see
- illustration at the top of this page) 4. Determine direction of rotation and
- intake port (see table below) 5. Determine mounting flange and shaft end (see individual data sheets for pump types)
- 6. Check order details

Ordering details


Ordering examples

Intermediate housings with coupling

Voith internal gear pumps type IPV, IPC, or IPH can be combined with pumps of a different design. They can also be used for different operating media.

L = Max. possible shaft length

 T = Number of teeth of the splined hub with involute flanks (ANSI B 92.1a) Pressure angle 30°
 B = available length to centre

Dimensions

The dimensions of Voith internal gear pumps type IPV 4 to 7, IPC 4 to 7, and IPH 4 to 6 can be seen from the data sheets for the corresponding individual pump. The dimensions of pumps of a different design are listed in the catalogues of the manufacturer concerned.

The options available in respect of mounting flange and shaft end correspond to the information in the data sheet for the individual pump.

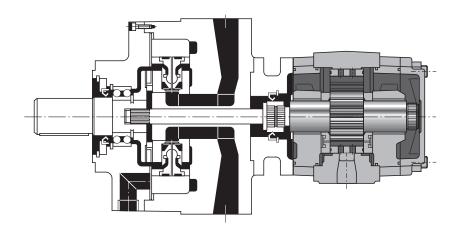
					<i>D</i> =	- avanab	ne lengin	10 001	nic		
Interme hou	diate using	0	A	В	С	D	O-ring	E	L	Т	Pitch
IPC 4/	100	64	82,55 ^{G7}	7	106,5±0,3	M 10	83x3	18	38	11	16/32
IPH 4/ IPV 5/ IPC 5/	101	80	82,55 ^{G7}	7	106,5±0,3	M 10	83x3	18	38	11	16/32
IPH 5/ IPV 6/ IPC 6/	102	92	82,55 ^{G7}	7	106,5±0,3	M 10	83x3	18	38	11	16/32
IPH 6/ IPV 7/ IPC 7/	103	92	82,55 ^{G7}	7	106,5±0,3	M 10	83x3	18	38	11	16/32
IPH 4/ IPV 5/ IPC 5/	104	80	101,6 ^{G7}	9	146±0,3	M 12	102x3	17	41	13	16/32
IPH 5/ IPV 6/ IPC 6/	105	92	101,6 ^{G7}	9	146±0,3	M 12	102x3	17	41	13	16/32
IPH 6/ IPV 7/ IPC 7/	106	92	101,6 ^{G7}	9	146±0,3	M 12	102x3	17	41	13	16/32
IPV 5/ IPC 5/	107	80	101,6 ^{G7}	9	146±0,3	M 12	102x3	17,5	46	15	16/32
IPH 5/ IPV 6/ IPC 6/	108	92	101,6 ^{G7}	9	146±0,3	M 12	102x3	17,5	46	15	16/32
IPH 6/ IPV 7/ IPC 7/	109	92	101,6 ^{G7}	9	146±0,3	M 12	102x3	17,5	46	15	16/32
IPH 5/ IPV 6/ IPC 6/	110	92	127 ^{G7}	9	181±0,3	M 16	126x3	8	59	14	12/24
IPH 6/ IPV 7/ IPC 7/	111	92	127 ^{G7}	9	181±0,3	M 16	126x3	8	59	14	12/24
IPV 6/ IPC 6/	112	92	127 ^{G7}	9	181±0,3	M 16	126x3	8	63	17	12/24
IPH 6/ IPV 7/ IPC 7/	113	92	127 ^{G7}	9	181±0,3	M 16	126x3	8	63	17	12/24
IPV 7/ IPC 7/	114	150	152,4 ^{G7}	9	228,6±0,3	M 18	150x3	8	118	13	8/16

Fastening bolts and O-ring are included in the scope of supply of the Voith pump.

Intermediate housings with coupling

Combinations

consisting of Voith internal gear pumps type IPV, IPC, or IPH and intermediate housings with coupling suitable for mounting pumps with a mounting flamge as per DIN ISO 3019-1 and a drive shaft with involute splines as per ANSI B 91.1a.

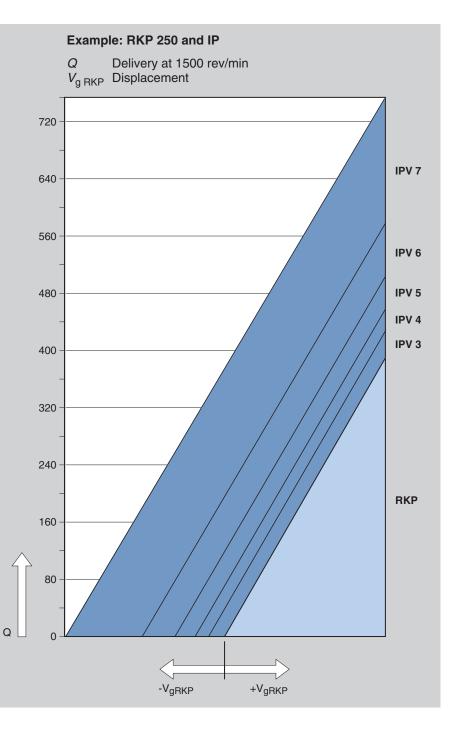

* For further options see dimension sheets of individual pumps.

Туре	Intermediate housing	Direction of rotati	on and intake port	Mounting	j flange	Shaft end*	
	nousing				€\$.	
		Clock- 1 wise	6 Anti- clockwise	0	1	1	
IPC 4/	100	1	6	0	1	1	
IPH 4/ IPV 5/ IPC 5/	101	1	6	0	1	1	
IPH 5/ IPV 6/ IPC 6/	102	1	6	0	1	1	
IPH 6/ IPV 7/ IPC 7/	103	1	6	0	1	1	
IPH 4/ IPV 5/ IPC 5/	104	1	6	0	1	1	
IPH 5/ IPV 6/ IPC 6/	105	1	6	0	1	1	
IPH 6/ IPV 7/ IPC 7/	106	1	6	0	1	1	
IPV 5/ IPC 5/	107	1	6	0	1	1	
IPH 5/ IPV 6/ IPC 6/	108	1	6	0	1	1	
IPH 6/ IPV 7/ IPC 7/	109	1	6	0	1	1	
IPH 5/ IPV 6/ IPC 6/	110	1	6	0	1	1	
IPH 6/ IPV 7/ IPC 7/	111	1	6	0	1	1	
IPV 6/ IPC 6/	112	1	6	0	1	1	
IPH 6/ IPV 7/ IPC 7/	113	1	6	0	1	1	
IPV 7/ IPC 7/	114	1	6	0	1	1	

Ordering example: IPV 5-50 with intermediate housing 104 for clockwise rotation with SAE 2-bolt flange and cylindrical drive shaft with key

IPV 5 / 104-50 / ... 101

Combination of variable-displacement pumps with IP internal gear pumps



Advantages and possibilities

Addition of flows

• An infinitely variable delivery flow is obtained by adding the flow of the variable displacement pump to that of the fixed displacement pump.

Two independent delivery flows.

Combination of variable-displacement pumps with IP internal gear pumps

Dimensions

Dimensions RKP

IP pumps with intermediate flange and transaxle are also available separately.

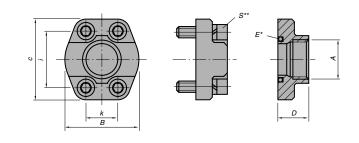
Туре	<i>L</i> ₁	L ₂	L ₆	Supplier
RKP 110 RKP 125	Dimensions as	per Wepuko da	ta sheets	Wepuko
RKP 160 RKP 180	Dimensions as	per Wepuko da	ta sheets	Wepuko
RKP 250	Dimensions as	per Wepuko da	ta sheets	Wepuko
RKP 32 RKP 45	Dimensions as	per Moog data	sheets	Moog Moog
RKP 63 RKP 80	Dimensions as	per Moog data	sheets	Moog Moog
RKP 90	Dimensions as	per Moog data	sheets	Moog

Length of adaptor flange IPV

	RKP 110/125 RKP 160/180 <i>p</i>	RKP 250 <i>p</i>	RKP 32/45 <i>p</i>	RKP 63/80/90 <i>p</i>
IPV 3	17	17	-	_
IPV 4	17	17	55	55
IPV 5	40	17	55	55
IPV 6	66,5	72,5	-	55
IPV 7	66,5	72,5	-	-

The IP dimensions can be seen from the dimension sheets for the individual pumps.

Ordering example


for combination pump, intermediate housing, and drive shaft

 IPV /5 - /64
 129 (Bosch RKP 63)

 IPV /5/5 - /64/64
 229 (Bosch RKP 63)

SAE suction and discharge flanges

as per SAE J 518 C Code 61

Single-piece SAE flange – dimensions									
	А	В	С	D	E*	i	k	S**	Perm. pressure [bar]
10	G 1/2"	46	54	36	18,66 – 3,53	38,1	17,5	M 8	345
11	G ³ / ₄ "	50	65	36	24,99 - 3,53	47,6	22,2	M 10	345
12	G 1"	55	70	38	32,92 - 3,53	52,4	26,2	M 10	345
13	G 1 ¹ / ₄ "	68	79	41	37,69 - 3,53	58,7	30,2	M 10	276
14 1)	G 1 ¹ / ₂ "	82	98	50	47,22 - 3,53	70	36	M 12	345 ¹⁾
30	G 1 ¹ / ₂ "	78	93	45	47,22 - 3,53	70	36	M 12	207
15	G 2"	90	102	45	56,74 - 3,53	77,8	42,9	M 12	207
16	G 2 ¹ / ₂ "	105	114	50	69,44 - 3,53	89	50,8	M 12	172
17	G 3"	124	134	50	85,32 - 3,53	106,3	62	M 16	138
18	G 4"	146	162	48	110,72 – 3,53	130	77,8	M 16	34

* O-ring ISO-R 1629 NBR (Buna N)

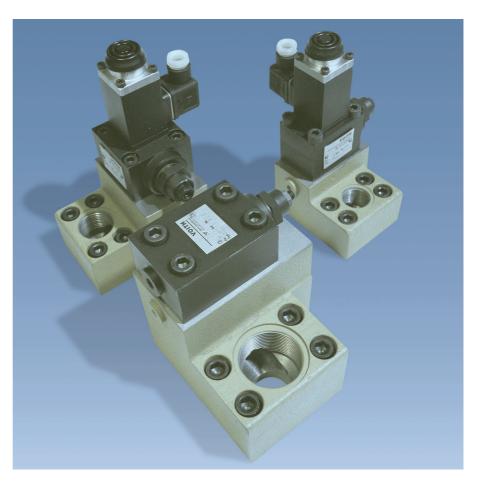
** Bolt DIN 912

Special Voith design deviating from SAE J 518 C Code 61

DBV pressure relief valves

Stepless mechanical adjustment Externally unloadable Control by solenoid or external pressure.

Brief description


Pressure relief valves type DBV are designed for controlling and safeguarding operating pressure and volume flow in a hydraulic system.

Pressure limitation is performed by a steplessly mechanically adjustable spring-loaded seat valve. The valve opens when the maximum operating pressure is reached. The restricted control oil flowing off produces a pressure difference at the main piston causing it to open and connect the pump to the reservoir.

Independent of the adjusted maximum operating pressure the unit can be switched to open centre operation by hydraulic or electromagnetic means or via external control oil connection.

The DBV 50/60 effects an automatic pressure-dependent connection/disconnection of the delivery flow (hysteresis normally 10% of system pressure).

DBV valves are available with SAE flanges in four internal diameters (10, 16, 25, 32 mm) for direct mounting on hydraulic pumps, especially Voith pumps. The installation position is optional.

Features:

- Protection, control, and switching by one valve.
- Simple hydraulic circuits permit the use of fixed-displacement pumps for applications where variabledisplacement pumps would otherwise have to be used.
- Maximum utilization of efficiency in the case of multiple-flow pumps.
- Suitable for systems where pressure is up to 320 bar.
- Cost-effective due to direct connection to the hydraulic pump.
- Optionally with electrical or hydraulic relief.

- Modular principle.
- Short response times.
- Trouble-free operation.
- Low pressure rise and minimum pressure peaks.

For technical data and dimensions see Voith brochure G 818.

Voith Turbo GmbH & Co. KG Product group Hydrostatics P.O. Box 2030 D-89510 Heidenheim Tel. ++49 (7321) 37-45 73 Fax++49 (7321) 37-78 09 E-Mail hydrostatik@voith.com http://www.voithturbo.com

